Unique factorization domain:Unique Factorization Domain
Unique Factorization Domain
Auniquefactorizationdomain,calledUFDforshort,isanyintegraldomaininwhicheverynonzerononinvertibleelementhasauniquefactorization,i.e., ...。其他文章還包含有:「Lecture11」、「Noncommutativeuniquefactorizationdomain」、「NOTESONUNIQUEFACTORIZATIONDOMAINSAlfonso...」、「Section45」、「Uniquefactorizationdomain」、「uniquefactorizationdomaininnLab」、「UniqueFactorizationDomains」、「唯一分解整環」...
查看更多 離開網站Auniquefactorizationdomain,calledUFDforshort,isanyintegraldomain[1]inwhicheverynonzerononinvertibleelementhasauniquefactorization[2],i.e.,anessentiallyunique[3]decompositionastheproductofprimeelements[4]orirreducibleelements[5].Inthiscontext,thetwonotionscoincide,sinceinauniquefactorizationdomain,everyirreducibleelement[6]isprime,whereastheoppositeimplicationistrueineverydomain.Thisdefinitionarisesasanapplicationofthefundamentaltheoremofarithmetic[7],whichistrueintheringofintegers,tomoreabst...
Lecture 11
https://acikders.ankara.edu.tr
Motiveted the unique factorization into primes (irreducibles) in Z, we investigate the integral domains which have this property. Definition. Let R be a ...
Noncommutative unique factorization domain
https://en.wikipedia.org
In mathematics, a noncommutative unique factorization domain is a noncommutative ring with the unique factorization property.
NOTES ON UNIQUE FACTORIZATION DOMAINS Alfonso ...
https://www.math.toronto.edu
We say that R is a unique factorization domain or. UFD when the following two conditions happen: • Every a ∈ R which is not zero and not a unit ...
Section 45
https://jupiter.math.nycu.edu.
In general, if an integral domain has the unique factorization property, we say it is a unique factorization domain (UFD). • If an integral domain has the ...
Unique factorization domain
https://en.wikipedia.org
unique factorization domain in nLab
https://ncatlab.org
A principal ideal domain (PID) is a UFD. (In particular, a Euclidean domain is a UFD.) As a partial converse, a Dedekind domain that is a UFD is a PID.
Unique Factorization Domains
https://www.jstor.org
A commutative integral domain with unique factorization of ideals is called a Dedekind domain; such a ring is necessarily Noetherian, i.e., it satisfies the as-.
唯一分解整環
https://zh.wikipedia.org
在數學中,唯一分解整環(Unique factorization domain)是一個整環,其中元素都可以表示成有限個不可約元素(或質元素)之積,並且表示法在允許重排與 ...
說明
https://zh.wikipedia.org