ChatGPT API fine-tuning:使用OpenAI Finetune API 微調出自己的模型(附程式碼)

使用OpenAI Finetune API 微調出自己的模型(附程式碼)

使用OpenAI Finetune API 微調出自己的模型(附程式碼)

2023年3月6日—使用OpenAIFinetuneAPI微調出自己的模型(附程式碼)·Step1.GetData·Step2.PreprocessData·Step3.Createfine-tunemodel·Step4.Check ...。其他文章還包含有:「AStep-by」、「Fine」、「Fine-TuningOpenAI'sGPT-4:AStep」、「Fine」、「HowtoCustomTrainandFine」、「OpenAIPlatform」、「什麼是微調(fine」、「掌握OpenAIGPT模型微調(Fine」

查看更多 離開網站

openai fine tuning教學openai api教學
Provide From Google
A Step-by
A Step-by

https://medium.com

This step-by-step guide will walk you through the process of custom fine-tuning using ChatGPT's API and a custom dataset.

Provide From Google
Fine
Fine

https://openai.com

Fine-tuning lets you get more out of the models available through the API by providing: Higher quality results than prompting; Ability to train on more ...

Provide From Google
Fine-Tuning OpenAI's GPT-4: A Step
Fine-Tuning OpenAI's GPT-4: A Step

https://www.datacamp.com

6 Steps For Fine-Tuning OpenAI GPT Models · 1. Prepare the training data · 2. Installing the openai library and setting up an API token · 3. Upload ...

Provide From Google
Fine
Fine

https://community.openai.com

Instead, fine-tuning can serve to get the model to respond in a certain style, format or to get to perform tasks in a specific way. In your case ...

Provide From Google
How to Custom Train and Fine
How to Custom Train and Fine

https://medium.com

Step 1: Get Your Data Ready · Step 2: Upload your training data · Step 3: Build Your Custom Fine-Tuned Model · Step 4: Use your fine-tuned model.

Provide From Google
OpenAI Platform
OpenAI Platform

https://platform.openai.com

Explore resources, tutorials, API docs, and dynamic examples to get the most out of OpenAI's developer platform.

Provide From Google
什麼是微調(fine
什麼是微調(fine

https://www.explainthis.io

Fine-tuning (微調) 是一個可以有效讓ChatGPT 輸出符合我們預期的方法。最近OpenAI 發表了GPT-3.5 模型的微調功能。在這一篇介紹文中,我們會先介紹 ...

Provide From Google
掌握OpenAI GPT 模型微調(Fine
掌握OpenAI GPT 模型微調(Fine

https://www.accucrazy.com

有效降低API 請求的延遲時間. 微調過程主要包含四個關鍵步驟: 準備並上傳高品質的訓練資料; 訓練新的客製化模型; 評估結果並根據需要優化資料; 在實際應用中部署您的微調 ...