Polynomial ring quotient:How to deal with polynomial quotient rings

How to deal with polynomial quotient rings

How to deal with polynomial quotient rings

2013年5月17日—Yousumtheclassesnormally,andastotheproduct,youfirsttaketheproduct,andthentaketheremainderofEuclideandivisionbyx4+1.。其他文章還包含有:「Math412.QuotientRingsofPolynomialRingsoveraField.」、「Math412.QuotientRingsofPolynomialRings.」、「Polynomialring」、「Polynomialringsandtheirquotients」、「QuotientRingsofPolynomialRings」、「QuotientsofUnivariatePolynomialRings」

查看更多 離開網站

Oftenyoucanusetheuniversalproperties(ofquotientsandpolynomialalgebras)inordertosimplifytherings.Forexample,$\mathbb{F}_2[x]/(x4+1)=\mathbb{F}_2[x]/((x+1)4)\cong\mathbb{F}_2[y]/(y4)$andthiscannotbesimplifiedanymore.Youjust"cut"thepolynomialsin$y$above$y4$.Ofcourse$y5$isstillthere,butitequalszero.And$1+y$isaunit,since$1+y+y2+y3$isinversetoit(moregenerally,unit+nilpotent=unit,thisisthegeometricseries).OftentheChineseRemainderTheoremhelpstosimplifytherings.Itshowsthatif$f\inK[x]$decomposesas$f_1...