有限體

有限體

在數學中,有限體(英語:finitefield)或伽羅瓦體(英語:Galoisfield,為紀念埃瓦里斯特·伽羅瓦命名)是包含有限個元素的體。與其他體一樣,有限體是進行加減乘除 ...。其他文章還包含有:「Finitefield」、「FiniteField」、「FiniteField」、「Finitefieldarithmetic」、「FiniteFields」、「GF(2)」、「Introductiontofinitefields」、「Section33」

查看更多 離開網站

在數學中,有限體(英語:finitefield)或伽羅瓦體(英語:Galoisfield,為紀念埃瓦里斯特·伽羅瓦命名)是包含有限個元素的體。與其他體一樣,有限體是進行加減乘除運算都有定義並且滿足特定規則的集合。有限體最常見的例子是當p為質數時,整數對p取模。有限體的元素個數稱為它的階。有限體在許多數學和計算機科學領體的基礎,包括數論、代數幾何、伽羅瓦理論、有限幾何學、密碼學和編碼理論。有限體的階(有限體中元素的個數)是一個質數的冪。對於每個質數p和每個正整數n在同構的意義下存在惟一的pn{\displaystylep{n}}階的有限體,...

Provide From Google
Finite field
Finite field

https://en.wikipedia.org

As with any field, a finite field is a set on which the operations of multiplication, addition, subtraction and division are defined and satisfy certain basic ...

Provide From Google
Finite Field
Finite Field

https://web.ntnu.edu.tw

我沒有研究。 Finite Field - Group. Primitive Element. 加法循環、乘法循環、次方循環,可以求得所有 ...

Provide From Google
Finite Field
Finite Field

https://mathworld.wolfram.com

A finite field is a field with a finite field order (i.e., number of elements), also called a Galois field. The order of a finite field is always a prime or ...

Provide From Google
Finite field arithmetic
Finite field arithmetic

https://en.wikipedia.org

In mathematics, finite field arithmetic is arithmetic in a finite field contrary to arithmetic in a field with an infinite number of elements, ...

Provide From Google
Finite Fields
Finite Fields

https://brilliant.org

The theory of finite fields is a key part of number theory, abstract algebra, arithmetic algebraic geometry, and cryptography, among others.

Provide From Google
GF(2)
GF(2)

https://en.wikipedia.org

GF(2) is the unique field with two elements with its additive and multiplicative identities respectively denoted 0 and 1. Its addition is defined as the usual ...

Provide From Google
Introduction to finite fields
Introduction to finite fields

http://web.stanford.edu

This chapter provides an introduction to several kinds of abstract algebraic structures, partic- ularly groups, fields, and polynomials.

Provide From Google
Section 33
Section 33

https://jupiter.math.nycu.edu.

Theorem 33.1 asserts that if E is a finite extension of degree n over Zp, then E has pn elements. • Thus, to construct a field of pn elements, we look for an.