「Dedekind domain」熱門搜尋資訊

Dedekind domain

「Dedekind domain」文章包含有:「DedekindDomains」、「Dedekinddomain」、「m3p8lecturenotes11」、「NOTESONDEDEKINDRINGSContents1.Fractional...」、「3PropertiesofDedekinddomains」、「Introduction」、「DedekindRing」、「abstractalgebra」

查看更多
Integral domainEuclidean domainIntegrally closedNoetherian ringPrincipal ideal domainPolynomial ringUnique factorization domainDedekind domain
Provide From Google
Dedekind Domains
Dedekind Domains

http://math.stanford.edu

Definition 1 A Dedekind domain is an integral domain that has the following three properties: (i) Noetherian, (ii) Integrally closed, (iii) All non-zero prime ideals are maximal.

Provide From Google
Dedekind domain
Dedekind domain

https://en.wikipedia.org

In abstract algebra, a Dedekind domain or Dedekind ring, named after Richard Dedekind, is an integral domain in which every nonzero proper ideal factors ...

Provide From Google
m3p8 lecture notes 11
m3p8 lecture notes 11

https://www.ma.imperial.ac.uk

The reason Dedekind domains are interesting to us is that the nonzero ideals in a Dedekind domain factor uniquely as products of prime ideals. The idea to study ...

Provide From Google
NOTES ON DEDEKIND RINGS Contents 1. Fractional ...
NOTES ON DEDEKIND RINGS Contents 1. Fractional ...

https://www.math.uchicago.edu

An integral domain R is a Dedekind ring (or Dedekind domain) if every non-zero ideal of R is invertible. A discrete valuation ring, or DVR, is a local.

Provide From Google
3 Properties of Dedekind domains
3 Properties of Dedekind domains

https://math.mit.edu

In the previous lecture we defined a Dedekind domain as a noetherian domain A that satisfies either of the following equivalent conditions:.

Provide From Google
Introduction
Introduction

https://crypto.stanford.edu

Theorem: Every number ring is a Dedekind domain. Proof: Since a number ring is a free abelian group of finite rank, any ideal ...

Provide From Google
Dedekind Ring
Dedekind Ring

https://mathworld.wolfram.com

The main example of a Dedekind domain is the ring of algebraic integers in a number field, an extension field of the rational numbers. An important consequence ...

Provide From Google
abstract algebra
abstract algebra

https://math.stackexchange.com

Let A be a Dedekind domain. PID implies UFD. So for the other direction assume A is an UFD. In this proof the author only considers prime ideals ...